Very common way to display hash function results is to show them as hexadecimal number. This page contains collection of MD5 and SHA-1 results that contains same hexadecimal digit as many times as possible in same number.
Note! This page have no point :-) This was done more or less just for "fun" and to practice running code in multiple CPUs, optimizing code and testing new profiler. I then just left it running along with many other similarly pointless programs running on my computer. At the same time this prooves that both MD5 and SHA-1 distributes their results very well. There isn't any particular result that would jump out from other results.
Input bytes used are all case-sensitive alphanumeric string, so numbers 0 to 9, characters A to Z and characters a to z. Due the nature of these hash functions, there is no reason to expect that any other kind of input bytes would give any better results.
I started searching from string "0", so there is no shorter case-sensitive alphanumeric strings that would return same or better results than the ones on this page. For example, there is no 6 character or shorter alphanumeric string that would result SHA-1 hash containing 21 or more of digits "9" when turned to hexadecimal number.
Key | Input | Output (MD5) | Count | |||
0 | 7BOGbV8D | 0007000B0011460F30060700F0100E0A | 18 | |||
1 | 4q0U9ZYM | 1A1B1161AF4911111C11F151F4110811 | 18 | |||
2 | 1Xgz1h4Y | 232A6227322222382C2BA22B5262E222 | 18 | |||
3 | 4ZLJVg4y | 31B29361C33F333023333333395323C3 | 18 | |||
4 | R4i0fwt | 4E42E4444494943449C4348444CCBB44 | 18 | |||
5 | 0wRLpuLu | 0555F5585C75A555A65FD5455A5E5559 | 18 | |||
6 | 32eDPR6Q | 566DB96DF1B66659666F66B66666166E | 18 | |||
7 | 63qYwvts | 7D7E7477B77777F86797076377727FB7 | 18 | |||
8 | 9rUbzMtb | 2888491638A8588C88C8886848E38888 | 18 | |||
9 | 0VcMr5PO | D9A39F9639C99999F599209995994999 | 19 | |||
A | 3KTzYK1z | FAAA4A9AA836A0AAA60A282AAAA9A9AA | 18 | |||
B | DO2oKmQ0 | 0B1BB1B4BDA9BBBBB48BBB1C1BBB24BB | 18 | |||
C | 2TWPlry1 | BC1CCCC0134C7CCCC78C6CC8C95CCCBC | 18 | |||
D | 18XNzE7k | FFDDDFD2DDBDDBD0DABD66DD7D9DDD1D | 18 | |||
E | BfJJRCP5 | CE8EE6EEFE56EBEECEE68E6EEEB33EEE | 18 | |||
F | 0Evx4MUZ | B67AFF3FFBFFFFB9FAFFF2F7FF26FFF3 | 18 |
Key | Input | Output (SHA-1) | Count | |||
0 | 1KfzB34f | 000909F0CC090F0940A0FF000D6000D050010502 | 21 | |||
1 | 1Uv54gh1 | FF1E31AB2611B1101C1F11E511F21BC11111131C | 20 | |||
2 | zVyXQpG | 4222A22B83289225222CE1462AA0222D2222C23C | 20 | |||
3 | 0T96zLdm | 39333313133B6AC934F78303333C3C9331332236 | 20 | |||
4 | 3HkxqvNc | 4941F4D844A43444684F04414434DE04F841444A | 20 | |||
5 | hzR3zQr | EF54F550A5B59555CA95556E755275353E95A555 | 19 | |||
6 | 1xcLHHaO | 966E66E6666EF366A636D9D9F6669EC793166666 | 20 | |||
7 | GYPtCu1n | 774697DDD77D8787777E7771727295CB7D7A7277 | 20 | |||
8 | 5nx2eL5l | 988588DD80D88684CF708888889188C889CF188B | 20 | |||
9 | epKe6so | 991968A949969939959679929E9357979F9A99E9 | 21 | |||
A | 6q1Qs6Qw | AA488AA480AFA0EAAAE1A748A02A3A46AAAAEAAA | 20 | |||
B | I3ZwMVR6 | BBABBC4BBBB9B3FBB0BBBB6BB8AB7B28DB8B43E4 | 21 | |||
C | FMhT2If5 | CBDFCBCCCCCCC2CDCCCC7C50B0C5C1BCCF97BECA | 20 | |||
D | 7XkJhWHu | D5EDDDEDDDDD8BBDDDDB811DD2DF193DBD205D0D | 20 | |||
E | 4EG28G9q | EDE59EE7087EEEEE3FE519CEEEE83EF5EE50E4EE | 20 | |||
F | 7B1pWUm4 | FF6FAFFF3FFFB0BFFFFB60BFEAFCFF75F89F35F0 | 20 |
Same thing when output is turned to bits.
Key | Input | Output (MD5) | Count | |||
0 | 3qgWoopO | 00101000 10000101 01000001 00000000 00000001 00000011 10001000 11000010 00100000 10000000 00100000 00000000 00000000 01000000 00010100 00100010 |
105 | |||
1 | DVI43vP | 01111111 10111111 00111110 00110111 10111111 11110011 10111111 11011101 10111111 01101111 11010011 11110101 11111111 11111111 11111011 11111111 |
105 |
Key | Input | Output (SHA-1) | Count | |||
0 | 0gGgNcAj | 01100001 10001000 00000010 00000001 10000110 00000000 00000000 00100000 01110001 01100011 00000010 01000010 00000000 00000001 00100000 10000001 00000000 00110001 00000010 10010000 |
128 | |||
1 | 0F9Ejdt9 | 11001111 00111011 11111111 01110011 11111111 11001110 11111111 11110110 01111111 10111111 11011111 00110001 11011011 11101111 01101110 10111111 11111011 01001111 01111111 01111111 |
126 |
Some extra hashes:
gkb -> MD5 -> 890A11CEDD5A4E7BFA76F9466EC0FFEE
DiNP -> SHA-1 -> 0249DEC0DEDEF36F82CDA85FA19F64CC90FEC622
3slGz -> MD5 -> DA4E3E0B5E55ED5CBFC399F46791D490
7pHah -> MD5 -> 6B4D2DBE8367177106EFBADA55E589B2
These are really bad:
RZHkEU -> MD5 -> A09455BAD1441FBCED18BAD5BADABAD9
1ErfBXCB -> SHA1 -> C8BADBD27BADBAD59F4BAD86F78BD9CBC1FBADFE
Not as bad as this though:
BWDcPv -> SHA-1 -> B843979D09FC28DAB71E149F2DECAFF14C0FFEE2
I have MD5 / SHA-1 generator in Tiikoni.com that will print out both hexadecimal result as well as bytes and bits of the resulting hash.
www.tiikoni.net/hashes/ | Full page map | Copyright © Pasi Laaksonen |